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A comprehensive analytical description is given of the longitudinal dynamics of a storage-ring free-electron
laser in the presence of a finite light-electron beam temporal detuning. Closed analytical expressions for the
main statistical parameters of the system(i.e., beam energy spread, intensity, centroid position, and r.m.s. value
of the laser distribution) as a function of the detuning are provided. The transition between the stable “cw”
regime and the unstable steady state is shown to be a Hopf bifurcation. This allows us to introduce a feedback
procedure which suppresses the bifurcation and significantly improves the system stability. The critical value of
the detuning above which the bifurcation occurs is analytically derived as a function of the electron energy and
of the beam optics parameters. Results are compared to experiments and display good agreement. Comparisons
with other theoretical models are also drawn.
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I. INTRODUCTION

A free-electron laser(FEL) is very closely related to the
undulator insertion devices familiar to all third generation
light source users. A relativistic electron beam interacts with
an electromagnetic field as it passes through a periodic mag-
netic structure forcing particles to move along sin-like trajec-
tories and, consequently, to emit radiation. Depending on
their initial phases, electrons gain or lose energy after the
interaction and this leads to a clustering further downstream.
This microbunching is, in turn, the source of enhanced(co-
herent) radiation emission. The term FEL actually covers a
wide variety of configurations. FEL oscillators(implemented
both on storage rings and on LINACs) have been the first
ones to be operated[1,2] and are still by far the common
ones. They provide intense, tunable, monochromatic, and
fully coherent radiation in the range from the infrared to the
UV/VUV. The quality of the optical cavity mirrors is pres-
ently the limiting factor for the performance of such devices.
In particular, it appears clear that the ambitious goal of ob-
taining laser light in the x-ray region rests on the successful
evolution of other kinds of FELs not employing mirrors,
such as self-amplified spontaneous emission(SASE) (see
Ref. [3] for a complete list of references) or high gain har-
monic generation(HGHG) [4]. Nevertheless, in the spectral
regions where high reflectivity mirrors are available, FEL
oscillators represent excellent light sources for scientific re-
search[5,6] because they can reach a spectral purity and a
temporal stability which at present does not seem to be
achievable with other techniques. Among oscillators,
storage-ring FELs(SRFELs, whose layout is schematically
shown in Fig. 1, present by far the more complex dynamics.
Such complexity origins from the fact that, unlike LINAC-
based FELs, where the electron beam is renewed after each
passage inside the interaction region, electrons are recircu-
lated.

As a result, at every light-beam energy exchange the sys-
tem keeps memory of previous interactions. In a SRFEL the
light produced by the electron beam is stored in an optical
cavity and amplified during the successive turns of the par-

ticles in the ring. The electron-beam energy is maintained
constant by means of a device(the radio frequency) which
supplies, turn by turn, the energy lost due to synchrotron and
FEL radiation to the electrons. The amplification is obtained
to the detriment of the electron-beam energy spread which
becomes larger when the intracavity power grows. The heat-
ing of the electron bunch due to the laser onset leads to the
reduction of the amplification gain until the latter reaches the
level of the cavity losses(laser saturation).

Since it originates from the synchrotron radiation, the la-
ser is naturally pulsed at the electron beam revolution period
(hundred of ns). On a larger(millisecond) temporal scale the
FEL dynamics depends strongly on the longitudinal overlap
between the electron bunch(es) and the laser pulses at each
pass inside the optical cavity. A given temporal detuning, i.e.,
a difference between the electron beam revolution period and
the photons round trip inside the optical cavity, leads to a
cumulative delay between the electrons and the laser pulses:
the laser intensity may then appear “cw”(for a weak or
strong detuning) or show a pulsed behavior(for an interme-
diate detuning amount) [7,8]. The temporal detuning can be
experimentally controlled either modifying the electron-
beam revolution period(via the variation of the radio fre-
quency) or by changing the distance between the mirrors of
the optical cavity. Due to a better sensitivity, the former
method is generally preferred. The central, narrow, “cw”
zone of the detuning curve(few fs around the perfect syn-
chronism) is generally the most interesting for user applica-
tions: in this zone, the laser is indeed characterized by the
maximum average power and the signal is the closest to
the Fourier limit [9]. However, it is worth mentioning
that the “ideal” dynamics, namely, the existence of a stable
regime around the perfect tuning, is a peculiar characteris-
tic of second-generation SRFELs, such as Super-ACO and
UVSOR. Last-generation SRFELs, such as DUKE and
ELETTRA, do not seem, at present, to display a similar be-
havior [10,11]. In fact, the existence of a reproducible,
stable, regime has not yet been experimentally observed. The
reason for that can be mainly traced back to the increased
sensitivity to electron-beam instabilities, which is proper to
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“high-gain” SRFELs with respect to lower-gain devices of
previous generation. In order to keep the laser-electron beam
synchronism and avoid jittering, which could determine a
migration towards one of the unstable, pulsed zones of the
detuning curve, the Super-ACO and UVSOR SRFELs have
implemented dedicated feedback systems[12,13]. These
kind of devices assume the existence of a stable “cw” regime
and, for this reason, cannot be straightforwardly installed on
last-generation SRFELs.

The longitudinal dynamics of a SRFEL in the central
“cw” zone of the detuning curve has been discussed in a
number of papers. The most significant analytical results
have been obtained in Refs.[14,15]. Here the laser electric
field, assumed to be centered around the maximum of the
temporal electron-bunch distribution, is decomposed on a ba-
sis of longitudinal modes(the so-called “super modes”) self-
reproducing in form after each round trip. After many beam
revolutions, the system spontaneously evolves towards the
fundamental super mode, which is characterized by a Gauss-
ian profile. In most cases, this result has been found to be in
a good agreement with experiments[16,17].

Up to now, due to the high mathematical complexity of
the problem, the longitudinal FEL dynamics in presence of a
significant laser-electron beam detuning has been studied
only numerically. Two different kinds of models have been
developed. In the first, the single-particle motion inside the
electron bunch and the dynamics of the field amplitude and
phase have been explicitly taken into account[18–20]. The
others, consider only the evolution of the statistical param-
eters of the electron bunch(i.e., the bunch length and the
energy spread) and of the laser distribution(i.e., intensity,
centroid position, and r.m.s. value) [21–24].

The model presented in Ref.[21,23] belongs to the sec-
ond category and is the starting point of this study. This
paper represents a natural complement to Ref.[25] and it is
organized as follows. In Sec. II the starting model is briefly
reviewed. In Sec. III an explicit four-dimensional discrete
map is introduced, based on the assumption of a Gaussian
profile for the laser distribution. In Sec. IV, the formulation is
further simplified: by means of a Taylor development four
rate equations are obtained and shown to be particularly suit-
able for an analytical investigation. Section V is devoted to
the study of the fixed points of the system as a function of
the detuning parameter. Closed analytical expressions are
provided and compared to results from numerical simula-
tions. In Sec. VI, these theoretical predictions are compared,
for the case of the perfect tuning, to experiments carried
out on the Super-ACO and ELETTRA FELs and with the
estimate obtained in the framework of the super-mode

theory. In Sec. VII the study of the stability of the fixed
points is performed. The transition between the “cw” and the
pulsed regimes is shown to be a Hopf bifurcation. This result
is exploited in Sec. VIII where a feedback procedure is in-
troduced and shown to enlarge the FEL stability domain.
Finally, in Sec. IX an explicit analytical expression of the
critical detuning is derived and compared with experiments
and with the super-mode theory predictions. In order to re-
lieve the main text, the details of the calculations are re-
ported in the Appendixes.

II. THE ORIGINAL MODEL

The longitudinal dynamics of a SRFEL can be described
by a system of rate equations accounting for the coupled
evolution of the electromagnetic field and of the longitudinal
parameters of the electron bunch[21]. The temporal profile
of the laser intensityyn is updated at each passn inside the
optical cavity according to

yn+1std = R2ynst − edf1 + gnstdg + isstd, s1d

wheret is the temporal position of the electron bunch distri-
bution with respect to the centroid,R is the mirror reflectiv-
ity, the detuning parametere is the difference between the
electrons revolution period(divided by the number of
bunches) and the period of the photons inside the cavity,isstd

FIG. 1. Schematic layout of a SRFEL.
FIG. 2. Schematic layout of the pass-to-pass laser-electron beam

interaction.DT stands for the period between two successive inter-
actions,t* is the position of the laser centroid with respect to the
peak of the electron density, ande accounts for the laser-electron
beam detuning at each pass.

FIG. 3. se/s0 is plotted versus the ratiogi /P. The circles rep-
resent the numerical solution of Eq.(5) while the solid line refers to
the theoretical estimate(9). The difference keeps smaller than 2%.
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accounts for the profile of the spontaneous emission of the
optical klystron[26,27]. Figure 2 shows a schematic layout
of the light-electron beam interaction in the presence of a
finite detuninge.

The FEL gaingnstd is given by

gnstd = gi
s0

sn
expF−

sn
2 − s0

2

2s0
2 GexpF−

t2

2st,n
2 G , s2d

wheregi ands0 are the initial(laser-off) peak gain and beam
energy spread, whilesn and st,n are the energy spread and
the bunch length after thenth light-electron beam interaction.
The first exponential on the right-hand side of Eq.(2) ac-
counts for the modulation rate of the optical-klystron spec-
trum [28], while the second one reproduces the temporal
profile of the electron bunch distribution. The latter is there-
fore assumed to keep its “natural” Gaussian profile under the
action of the laser onset. This hypothesis also entails that the
interaction of the electron beam with the ring environment
[29–31] is neglected. This point will be further discussed in
the following.

Defining g0,n as the peak gain after thenth interaction
gnstd can be written in the form

gnstd = g0,nexpF−
t2

2st,n
2 G . s3d

The evolution of the laser-induced energy spread is ruled by
the following equation:

sn+1
2 = sn

2 +
2DT

ts
sgIn + s0

2 − sn
2d, s4d

whereg=se
2−s0

2. Herese is the equilibrium value(i.e., that
reached at the laser saturation) of the energy spread at the
perfect tuning andDT is the bouncing period of the laser
inside the optical cavity;In=e−`

` ynstddt is the laser intensity
normalized to its equilibrium value(i.e., the saturation value
for e=0) and ts stands for the synchrotron damping time.
Assuming that the saturation is achieved when the peak gain
is equal to the cavity lossesP, the following relation holds
[32]:

P = gi
s0

se
expF−

se
2 − s0

2

2s0
2 G . s5d

By inserting Eq.(5) into Eq. (3) a closed expression for the
peak gain is obtained:

g0,n = gi
s0

sn
F Pse

gis0
Gssn

2−s0
2d/g

. s6d

Relation (5) sets the equilibrium value of the beam energy
spread as function of the quantitiesgi and P, regarded as
independent variables. An approximate closed expression for
the ratiose/s0 is also obtained by means of a perturbative
analysis. Assume

se

s0
= 1 +h s7d

with h small. From Eq.(5) one gets

lnSP

gi
D + h . −

1

2
fs1 + hd2 − 1g . − h s8d

and thus

se

s0
. 1 +

1

2
lnSgi

P
D . s9d

This estimate is displayed in Fig. 3 and compared to a direct
numerical solution of Eq.(5).

Finally, let us note that neglecting the interaction of the
electron beam with the ring environment allows one to use,
at any current, the relation of proportionality

st,n =
a

V
sn, s10d

whereV is the synchrotron frequency anda the momentum
compaction factor.

The model presented in this section is shown to reproduce
quantitatively the experimental results obtained on the
Super-ACO FEL. This point was extensively addressed in
Ref. [33]. As an example, in Fig. 4 the laser intensity is
plotted as function of time: distinct dynamical regimes are
found corresponding to different values of the detuning pa-
rametere.

III. THE EVOLUTION OF THE STATISTICAL
PARAMETERS OF THE LASER DISTRIBUTION:

AN EXPLICIT FORMULATION

Equation(1) governs the evolution of the statistical pa-
rameters of laser distribution, i.e., the laser intensity(zero-
order moment), the laser centroid(first-order moment), and
the standard deviation(second-order moment). By assuming
a specific form of the laser distribution, it is in principle
possible to characterize explicitly the dynamics of each

FIG. 4. Numerical simulation performed for the case of Super-
ACO SRFEL. The results reproduce different “natural” regimes of
the (normalized) laser intensity.
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quantity. The choice of a Gaussian profile enables one to
write

ynstd =
In

Î2psl,n

expF−
st − tnd2

2sl,n
2 G , s11d

where In is the laser intensity,tn the position of the laser
centroid, andsl,n the r.m.s. width of the distribution. Note
that the Gaussian hypothesis can be regarded as an extension
of the result obtained in the framework of the super-mode
theory [34] for a perfect laser-electron beam overlapping, to
the case of a detuned FEL. Starting from this ansatz, the rate
equations for the main statistical parameters are derived in
the following. The details of the calculation are given in Ref.
[35].

A. Laser intensity

The rate equation for the evolution of the laser intensity
can be obtained by computing the zero-order moment of the
laser distribution

E
−`

+`

yn+1stddt = In+1 = R2E
−`

+`

ynst − edf1 + gnstdgdt

+E
−`

+`

isstddt. s12d

Making use of the assumption(11), one gets

In+1 = R2In + R2E
−`

+`

ynst − edgnstddt + Is, s13d

whereIs is the intensity of the spontaneous emission normal-
ized to the saturation value(at e=0) of the laser intensity. By
inserting Eq.(11) in Eq. (13), and computing the integral as
in Ref. [36], one obtains the final equation

In+1 = R2In51 + gi
s0

sn

expF−
sn

2 − s0
2

2s0
2 GexpF−

stn + ed2

2ssl,n
2 + st,n

2 dG
Î1 +S sl,n

st,n
D2 6

+ Is. s14d

B. Laser centroid

The rate equation for the evolution of the centroid of the
laser distribution results from the calculation of its first-order
moment

E
−`

+`

tyn+1stddt = In+1tn+1

=
R2In

Î2psl,n
E

−`

+`

t

3expF−
st − tn − ed2

2sl,n
2 Gdt +

R2In

Î2psl,n

gi
s0

sn

3expF−
sn

2 − s0
2

2s0
2 GE

−`

+`

t

3expF−
st − tn − ed2

2sl,n
2 G

3expF−
t2

2st,n
2 Gdt +E

−`

+`

tisstddt. s15d

The last integral is equal to zero since the spontaneous emis-
sion is assumed to be a symmetric bell shaped function cen-
tered int=0. Further, it can be shown that

R2In

Î2psl,n
E

−`

+`

t expF−
st − tn − ed2

2sl,n
2 Gdt = R2Instn + ed

s16d

and [36]

E
−`

+`

t expF−
st − tn − ed2

2sl,n
2 GexpF−

t2

2st,n
2 Gdt

=
Î2psl,n

Î1 +S sl,n

st,n
D2

stn + ed

1 +S sl,n

st,n
D2expF−

stn + ed2

2ssl,n
2 + st,n

2 dG .

s17d

Combining together, one gets

tn+1 = stn + ed
1 + J0

1 + J0F1 +S sl,n

st,n
D2G s18d

with

J0 ; gi
s0

sn

expF−
sn

2 − s0
2

2s0
2 GexpF−

stn + ed2

2ssl,n
2 + st,n

2 dG
F1 +S sl,n

st,n
D2G3/2 . s19d

Note that in deriving Eq.(18) we made explicit use of Eq.
(14) and neglected the contribution associated toIs.

C. Standard deviation

The evolution of the r.m.s. value of the laser distribution
results from the calculation of its second-order moment

E
−`

+`

st − tn+1d2yn+1stddt

= In+1sl,n+1
2

=
R2In

Î2psl,n
E

−`

+`

st − tn+1d2

3expF−
st − tn − ed2

2sl,n
2 Gdt +

R2In

Î2psl,n

gi
s0

sn

3expF−
sn

2 − s0
2

2s0
2 GE

−`

+`

st − tn+1d2
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3 expF−
st − tn − ed2

2sl,n
2 GexpF−

t2

2st,n
2 Gdt

+E
−`

+`

st − tn+1d2isstddt. s20d

Solving the integrals(see Ref.[35] for details) in the right-
hand side of the previous equation, one gets

J1 ;
1

Î2psl,n
E

−`

+`

st − tn+1d2expF−
st − tn − ed2

2sl,n
2 Gdt

= sl,n
2 + stn + e − tn+1d2, s21d

J2 ;
1

Î2psl,n

gi
s0

sn
expF−

sn
2 − s0

2

2s0
2 GE

−`

+`

st − tn+1d2

3expF−
st − tn − ed2

2sl,n
2 GexpF−

t2

2st,n
2 Gdt

= gi
s0

sn
expF−

sn
2 − s0

2

2s0
2 GexpF−

stn + ed2

2ssl,n
2 + st,n

2 dG
F1 +S sl,n

st,n
D2G1/2

35 sl,n
2

1 +S sl,n

st,n
D2 + 3 stn + ed

1 +S sl,n

st,n
D2 − tn+14

2

6 , s22d

J3 ; E
−`

+`

st − tn+1d2isstddt = Issst,n
2 + tn+1

2 d, s23d

and Eq.(20) can be rewritten in the final compact form

sl,n+1
2 =

R2InsJ1 + J2d + J3

In+1
. s24d

Summing up, Eq.(1) is replaced by Eqs.(14), (18), and(24).
The model needs still to be completed by Eq.(4), which
governs the evolution of the laser-induced energy spread.

An exhaustive campaign of simulations has been per-
formed in order to asses the validity of this new formulation.
Systematic comparisons have been drawn with the original
model using the case of the Super-ACO FEL as a reference
(see Table I). A satisfactory agreement has been found[35],
hence validating a posteriori the Gaussian hypothesis utilized
in deriving Eqs.(14), (18), and(24).

Making the dynamics of the FEL parameters explicit of-
fers some important advantages. First of all, a faster numeri-
cal implementation is now possible, thus enhancing the sta-
tistics over previous investigations. Moreover, and this is the
main topic addressed in this paper, the new formulation
opens up the perspective of a full analytical study, which
allows us to characterize the functional dependence of the
electron-beam energy spread, intensity, centroid position,
and r.m.s. value of the laser distribution versus the light-
electron beam detuning. In particular, it will be possible,
through a stability analysis, to determine the critical value of
the detuning parameterec corresponding to the transition be-

tween the stable and unstable regimes. A concise survey of
part of these results has been presented in Ref.[25].

IV. A SIMPLIFIED FORMULATION

The previous formulation can be further simplified by re-
stricting the analysis to relatively small values of the detun-
ing e. We are in particular interested in the region of stable
(“cw” ) signal and we aim to characterize the transition to the
unstable zone. Within this range, the quantities

x = S sl,n

st,n
D2

, s25d

y =
1

2
S tn + e

st,n
D2

s26d

are asymptotically small. These assumptions are supported
by a numerical study based on the original model[33] and
are also confirmed by experiments. Hence, a Taylor develop-
ment can be performed in Eqs.(14), (18), and (24) derived
above. In the following the analysis will be limited to the
first order in bothx andy. Mixed terms are also neglected.

A. Laser intensity

With g0,n defined as in Eq.(6), the rate equation for the
laser intensity takes the form

In+1 = R2In51 +

g0,nexpF − y

1 + x
G

s1 + xd1/2 6 + Is, s27d

thus

In+1 . R2InF1 + g0,nS1 −
1

2
x − yDG + Is. s28d

B. Laser centroid

Equation(18) can be written in the form

TABLE I. Characteristics of the Super-ACO and ELETTRA SR-
FELsfor a given experimental setting. The analytical dependence of
Is versusgi and P (together with the numerical estimate reported
here) has been obtained as in Ref.[35].

Super ACO Elettra

Beam energy(MeV) 800 900

a 1.4310−2 1.4310−3

V (KHz) 14 16

ts (ms) 8.5 87

s0 5.4310−4 1.5310−5

se/s0 .1.5 .1.5

llas (nm) 350 250

gis%d 2 15

Ps%d 0.8 7

DT (ns) 120 864

Is .1.4310−8 .4.3310−7

ANALYTICAL THEORY AND CONTROL OF THE… PHYSICAL REVIEW E 70, 016503(2004)

016503-5



tn+1 = stn + ed31 + g0,n

expF − y

1 + x
G

s1 + xd3/2

1 + g0,n

expF − y

1 + x
G

s1 + xd1/2

4 . s29d

Developing up to the first order inx andy, one gets

tn+1 = stn + edf1 − g0,nxg, s30d

where use has been made of the fact thatg0,n!1.

C. Standard deviation

Equation(24) becomes

sl,n+1
2 =

sl,n
2 + fstn + ed − tn+1g2 +

g0,nexpF − y

1 + x
G

s1 + xd1/2 F sl,n
2

1 + x
+ S tn + e

1 + x
− tn+1D2G

1 +

g0,nexpF − y

1 + x
G

s1 + xd1/2

+
Issst,n

2 + tn+1
2 d

In+1
. s31d

Developing up to the first order inx andy gives

sl,n+1
2 = sl,n

2 f1 − g0,nxg +
Issst,n

2 + tn
2d

In
, s32d

where we operated the following additional simplification:

Is

In+1
sst,n

2 + tn+1
2 d .

Is

In
sst,n

2 + tn
2d. s33d

D. The simplified 4D map

On the basis of the above, and recalling the definition ofx
and y introduced, respectively, in Eqs.(25) and (26), the
simplified model accounting for the coupled evolution of the
statistical longitudinal parameters of a SRFEL can be cast in
the final form

sn+1
2 = sn

2 + a1fa2In + 1 −sn
2g,

In+1 = R2InF1 + g0,nS1 −
a3

2

sl,n
2

sn
2 −

a3

2

stn + ed2

sn
2 DG + Is,

tn+1 = stn + edF1 − g0,na3
sl,n

2

sn
2 G ,

sl,n+1
2 = sl,n

2 F1 − g0,na3
sl,n

2

sn
2 G +

Is

In
Ssn

2

a3
+ tn

2D , s34d

where

a1 =
2DT

ts
, a2 =

se
2 − s0

2

s0
2 , a3 = S V

s0a
D2

, a4 =
Pse

gis0

s35d

and

g0,n =
gi

sn
F Pse

gis0
Gssn

2−1d/a2

=
gi

sn
a4

ssn
2−1d/a2. s36d

Note the redefinition ofsn which is from hereon normalized
to s0.

Although approximated, the model(34) still captures the
main features of the longitudinal FEL dynamics. In particu-
lar, the transition from the “cw” regime to the unstable
(pulsed) steady state occurs for a temporal detuning which is
close to the one found in the framework of the exact formu-
lation and, hence, to the experimental value. However, due to
the approximations involved in the derivation, system(34)
breaks down for large values of the detuning amount, i.e.,
when the lateral “cw” zones of the detuning curve are ap-
proached(see Fig. 4).

Consider now the phase space portraitsfzn,szn+1

−znd /DTg, wherez stands forI ,s ,t, or sl. For small values
of e (i.e., when the laser spans the central “cw” zone of the
detuning curve) the system tends asymptotically towards a
stable fixed point, see Fig. 5. Beyond the transition to the
unstable steady state, limit cycles are clearly displayed, see
Fig. 6. This observation suggests the existence of a bifurca-
tion occurring for a critical valueec of the detuning param-
eter. This issue will be extensively addressed in the following
sections.

G. DE NINNO AND D. FANELLI PHYSICAL REVIEW E 70, 016503(2004)

016503-6



V. CALCULATION OF THE FIXED POINTS

By approximating finite differences with differentials, i.e.,

dI

dt
.

In+1 − In

DT
,

ds

dt
.

sn+1 − sn

DT
,

dt

dt
.

tn+1 − tn

DT
,

dsl

dt

.
sl,n+1 − sl,n

DT
, s37d

one can replace the single-turn map(34) with the continuous
system

ds

dt
=

a1

DT

1

2s
fa2I + 1 −s2g ; f1ss,I,t,sld,

dI

dt
=

R2

DT
IF−

P

R2 +
gi

s
a4

ss2−1d/a2S1 −
a3

2

sl
2

s2 −
a3

2

st + ed2

s2 DG
+

Is

DT
; f2ss,I,t,sld,

dt

dt
= −

t

DT
+

st + ed
DT

F1 − gia3a4
ss2−1d/a2

sl
2

s3G ; f3ss,I,t,sld,

dsl

dt
= −

1

DT

gi

2
a3a4

ss2−1d/a2
sl

3

s3 +
1

DT

Is

I

1

2sl
Ss2

a3
+ t2D

; f4ss,I,t,sld. s38d

Assume from hereone.0, being the scenario fore,0 com-

pletely equivalent. The fixed pointssĪ ,s̄ , t̄ ,sld of system
(38) are found by imposing

dI

dt
=

ds

dt
=

dt

dt
=

dsl

dt
= 0. s39d

After some algebraic calculations, detailed in Appendix A,

one can expressĪ , t̄ ,s̄l as a function ofs̄:

Ī =
s̄2 − 1

a2
, s40d

t̄ = H1

2
F−

s̄2

a3
+ÎS s̄2

a3
D2

+ 4e2AGJ1/2

, s41d

s̄l = H Is

2gia3
a4

s1−s̄2d/a2a2
s̄3

s̄2 − 1
F s̄2

a3
+ÎS s̄2

a3
D2

+ 4e2AGJ1/4

,

s42d

where

A =
s̄3ss̄2 − 1d

a2Is

a4
s1−s̄2d/a2

gia3
. s43d

The equilibrium value of the energy spreads̄ is found by
solving the following implicit equation:

gi

s̄
a4

ss̄2−1d/a2H1 −
1

2

a3

s̄2fs̄2
l + st̄ + ed2gJ =

P

R2 , s44d

wheres̄l andt̄ are, respectively, given by Eqs.(42) and(41).
Equation(44) can be solved numerically, for any given value
of the detuninge. The estimate ofs̄ is then inserted in Eqs.

(40)–(42), to compute the corresponding values ofĪ , t̄ ,s̄l. In
Fig. 7 the asymptotic values of the main statistical param-
eters are plotted as a function ofe. The symbols refer to the
simulations, while the solid line represents the above analytic
solution. The agreement is remarkably good.

FIG. 5. Phase-space portraits fore=0.1 fs. Top left panel:
sIn+1− Ind /DT versusIn. Top right panel:ssn+1−snd /DT versussn.
Bottom left panel:stn+1−tnd /DT versustn. Bottom right panel:
ssl,n+1−sl,nd /DT versussl,n.

FIG. 6. Phase-space portraits fore=2 fs. Top left panel:sIn+1

− Ind /DT versusIn. Top right panel:ssn+1−snd /DT versussn. Bot-
tom left panel: stn+1−tnd /DT versus tn. Bottom right panel:
ssl,n+1−sl,nd /DT versussl,n.
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Furthermore, it is possible to derive a closed analytical
expression fors̄ as a function ofe, and consequently for the
whole bunch of variables involved, given the explicit rela-
tions (40)–(42). The details of the quite cumbersome calcu-
lation are enclosed in Appendix A. Here, attention is focused
on the final result. Assume that the equilibrium value of the
energy spread foreÞ0 remains close to that reached at the
perfect tuning

s̄2 =
se

2

s0
2 + d s45d

with d!1. By inserting this ansatz in Eq.(44) and solving
the system one gets

d =

seP

a4gis0R
2 − 1 +

1

2
a3

s0
2

se
2G1

S ln a4

a2
−

1

2

s0
2

se
2DS1 −

1

2
a3

s0
2

se
2G1D −

1

2
a3

s0
2

se
2SG2 −

s0
2

se
2G1D

s46d

with

G1 =
1

2
S−

1

a3

se
2

s0
2 + ÎcD , s47d

G2 =
1

2
1−

1

a3
+

1

2

2

a3
2

se
2

s0
2 + 4e2b

Îc
2 , s48d

and

b =
se/s0

giIsa2a3a4
F3

2
Sse

2

s0
2 − 1D +

se
2

s0
2 −

ln a4

a2

se
2

s0
2Sse

2

s0
2 − 1DG ,

s49d

c =
1

a3
2

se
2

s0
2 + 4ae2, s50d

a =
se/s0

giIsa2a3a4
FSse

2

s0
2 − 1Dse

2

s0
2G . s51d

This solution is plotted in Fig. 7 with a long-dashed line,
displaying satisfactory agreement with the results of the
simulations. To our knowledge this study represents the very
first attempt to characterize the analytic dependence of the
equilibrium statistical parameters of the SRFEL versus the
temporal detuninge, over the whole central region of “cw”
behavior. In the next section attention is focused on the case
of perfect tuning(i.e., e=0) and comparisons are drawn be-
tween the theoretical results derived above and analogous
predictions obtained in the framework of the super-mode
theory. Comparison with experiments are also outlined.

VI. THE CASE OF PERFECT TUNING: COMPARISON
WITH EXPERIMENTS AND WITH THE THEORY

OF SUPERMODES

When the light and the electron beam are perfectly syn-
chronized at each pass inside the interaction region(i.e., e
=0), Eq. (42) reduces to Ref.[37]:

s̄l = F Is

P

1

a3
2s̄4G1/4

, s52d

where use has been made of the second and fourth of rela-
tions (35). Using Eqs.(9) and(10) and the third of relations
(35), the expression forsl takes the form

s̄l . S Is

P
D1/4F1 +

1

2
lnSgi

P
DGst,0. s53d

The expression(53) for s̄l can be compared both with ex-
perimental results and with the estimatess̄ldsm obtained
within the framework of the super-mode theory[34]:

ss̄ldsm=
1

c

1

2
S1 + 73 10−3Nd

N
DÎDokst,0, s54d

where Dok=2Df1+0.913sNd/Ndg, D=Nllas and llas stands
for the laser wavelength.

In Table II the theoretical predictionss̄l and ss̄ldsm are
listed together with the experimental values obtained, for the
settings of Table I, in the case of the Super-ACO and
ELETTRA FELs.

The theoretical estimates based on Eq.(53) show to be
closer by a factor 2 to the experimental values with respect to
the results obtained in the framework of the super-mode
theory. In addition, it is worth stressing that while relation
(54) has been obtained in Ref.[34] by means of a semiana-
lytical approach, relation(53) is fully analytical and allows

FIG. 7. The fixed points are plotted as function of the detuning
parametere. Top left panel: Normalized laser intensity. Top right
panel: Normalized electron-beam energy spread. Bottom left panel:
Laser centroid. Bottom right panel: r.m.s. value of the laser distri-
bution. The symbols refer to the simulations, the solid line stands
for the analytic approach based on the numerical solution of Eq.
(44), while the long-dashed lines represent the closed analytical
expressions.
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us to relate the pulse width to the values of the independent
variables of the model.

The results reported in Table II also indicate that the the-
oretical predictions underestimate in both cases the experi-
mental value. The reason for that can be traced back to the
fact that both theoretical models neglect the effect of the
microwave instability resulting from the electron beam inter-
action with the ring environment(e.g., the metallic wall of
the vacuum chamber) [29]. In the case of ELETTRA the
situation is even more complicated by the presence of a
“kick-like” instability (having a characteristic frequency of
50 Hz) which periodically switches off the laser preventing
the attainment of a stable “cw” regime. A rigorous, self-
consistent, analytical treatment of the SRFEL dynamics in
presence of electron-beam instabilities is still lacking and
will be addressed in a forthcoming analysis.

VII. STABILITY OF THE FIXED POINTS

The stability of the fixed point X̄
=fĪsed ,s̄sed , t̄sed ,s̄lsedg can be determined by studying the
eigenvalues of the Jacobian matrix associated to the system
(38), namely,

J =1
J11 J12 J13 J14

J21 J22 J23 J24

J31 J32 J33 J34

J41 J42 J43 J44

2 , s55d

where

Jij = S ] f i

] Xj
D

X=X̄
si, j = 1,2,3,4d, s56d

where X =fs ,I ,t ,slg. The explicit expressions for the ele-
mentsJij are given in Appendix B. The eigenvalues of the
Jacobian are found by solving the fourth-order characteristic
equations

l4 + c3l3 + c2l2 + c1l + c0 = 0 s57d

with

c3 = − J11 − J22 − 3J33,

c2 = 3J22J33 − J21J12 + J11J22 + 2J33
2 + 3J11J33 − J42J24

− J34J43 . − J21J12, s58d

c1 = J42J24J33 − 3J11J22J33 + 3J21J12J33 − J42J23J34 − 2J11J33
2

− J31J12J23 − 2J22J33
2 + J11J42J24 − J41J12J24 + J22J34J43

+ J11J34J43 . 3J21J12J33,

c0 = − J11J42J24J33 − J41J12J23J34 − 2J21J12J33
2 + 2J31J12J23J33

+ 2J11J22J33
2 + J41J12J24J33 + J11J42J23J34 − J11J22J34J43

+ J21J12J34J43 − J31J12J24J43 . − 2J21J12J33
2 . s59d

Equation(57) is solved numerically. The real and imaginary
parts of the eigenvalues are reported in Fig. 8. The system is
by definition stable when all the real parts of the eigenvalues
are negative. The transition to an unstable regime occurs
when at least one out of those becomes positive. In general,
the loss of stability takes place according to different modali-
ties. Consider, for instance, a Jacobian matrix with a pair of
complex conjugate eigenvalues and assume the real parts of
all the eigenvalues to be negative. A Hopf bifurcation occurs
when the real part of the two complex eigenvalues become
positive, provided the other keep their sign unchanged[38].
This situation is clearly displayed in Fig. 8, thus allowing us
to conclude that the transition between the “cw” and the
pulsed regime in a SRFEL is a Hopf bifurcation. These re-
sults allow the possibility of stabilizing the laser signal in the
region where it displays a natural pulsed regime. This issue
will be shortly addressed in the next section(see also Ref.
[25]).

Finally, note that, in principle, the analytical characteriza-

tion of X̄ given in Sec. V, allows us to directly estimate the
eigenvalues. Hence, it should be possible to derive an ap-
proximate relation for the critical detuninge. This crucial
point will be addressed in the following.

VIII. STABILIZATION OF THE UNSTABLE
STEADY STATE

Having characterized the transition from the stable to the
unstable steady state in term of Hopf bifurcation opens up
interesting perspectives for the improvement of the system
performance. The procedure consists in introducing a spe-
cific self-controlled(closed loop) feedback to suppress lo-
cally the Hopf bifurcation and enlarge the zone of stable
signal. This technique has been applied successfully in the
past to stabilize the chaotic behavior of a conventional laser
[39–41]. In the context of SRFEL, the control is achieved by
replacing the constant detuninge with the time-dependent
quantity

estd = e0 + bDTİ s60d

(whereİ stands for the time derivative of the laser intensity),
which is added to the system(38).

Heree0 is assumed to be larger thanec: when the control
is switched off, i.e.,b=0, the laser is therefore unstable and
displays periodic oscillations. Forb larger than a certain
thresholdbc, the oscillations are damped and the laser be-
haves as if it were in the “cw” region. Note that, as soon as

the saturation is reached,İ =0 and, thus, the stable regime is

TABLE II. Theoretical widths of the laser pulse[obtained using
relations(53) and (54)] compared to experimental values for the
case of the Super-ACO and ELETTRA FELs. The experimental
settings are those specified in Table I.

Super ACO Elettra

s̄l (ps) 5 2

ss̄ldsm (ps) 2.5 1

Experimental values(ps) .9 .5
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maintained asymptotically fore=e0.ec, i.e., well in the
former unstable zone. Figure 9 shows the behavior of the
FEL intensity obtained for, respectively,b=0 (control off)
andb=6310−3 (control on). Herebc,5310−4.

This theoretical result provides the ground for experimen-
tal tests, aiming to enlarge the stable “cw” zone of the de-
tuning curve. An outline of the strategy is depicted below.
The signal proportional to the total output power(produced,
e.g., by the response of a photodiode) is sent to the stabili-
zation system, made of a simple device to obtain a deriva-
tive, followed by an inverting amplifier with a variable gain.
The output of the feedback system is then used to modify the
electron-beam revolution period(via the modification of the
radio frequency), i.e., the value of the detuninge. Recently,
this technique has been applied at Super-ACO[42] and
ELETTRA [43] and shown to produce a significant extension
of the stable “cw” region, thus confirming our theoretical
predictions.

IX. CALCULATION OF THE CRITICAL DETUNING
PARAMETER

The knowledge of the eigenvalues of the Jacobian matrix
(56) as a function ofe allows us to derive the value ofec, for

any given experimental setting. In Fig. 10,ec is plotted ver-
sus the ratiogi /P. The circles refers to the values determined
from dynamical simulations, while the diamonds stand for
the computation. The agreement is good.

Further, as previously mentioned, it is is principle possible
to obtain an approximate relation forec, by using the closed
analytical expressions for the fixed points, derived in Sec. V.
Assume Eq.(57) to admit two purely imaginary solutions,
i.e., l= ± iv (with vPRe). By definition, this condition
holds whene=ec. Equation(57) reduces to

v4 − c2v2 + c0 = 0,

− c3v3 + c1v = 0. s61d

By inserting the solution of the first of Eq.(61) into the
second, and taking into account that numerical evidences
suggestc0!c2, one gets

0 = −
1

2
c3sc2 + Îc2

2 − 4c0d + c1 . − c2c3 +
c0c3

c2
+ c1

. − J21J12sJ11 + J22 + 3J33d −
sJ11 + J22 + 3J33d2J21J12J33

2

J21J12

+ 3J21J12J33 = − sJ11 + J22dsJ21J12 + 2J33
2 d − 6J33

3 . s62d

By making use of the explicit expressions given in Ap-
pendix B, it can be shown thatJ33 is much smaller thanJ11,
J22, J21, andJ12, and thus the previous equation reduces to

sJ11 + J22d . 0. s63d

Recalling Eqs.(B2) and (B7) in Appendix B, the equation
for ec takes the final form

FIG. 8. Real(upper panel) and imaginary(lower panel) parts of
the eigenvalues of the Jacobian matrix associated to the system(38)
as a function of the detuning parametere. The circle in the picture
for the real parts represents the transition from the stable to the
pulsed regime, i.e., the Hopf bifurcation.

FIG. 9. Behavior of the FEL intensity in absence(upper panel)
and in presence(lower panel) of the derivative control system. The
parameters utilized for the simulations are those of Super-ACO(see
Table I). The value ofe0 [see Eq.(60)] has been set to 1.3 fs, i.e.,
well inside the unstable region of the detuning curve. The stabiliza-
tion has been achieved usingb=6310−3.
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− a1 + R2H1 +
gi

s̄
a4

ss̄−1d/a2F1 −
a3

2
S s̄2

l

s̄2 +
st̄ + ecd2

s̄2 DGJ − 1

. 0. s64d

For the purpose of evaluatingec, one can neglect the contri-
bution of the correctiond in the expression(45) for s̄. Thus,
according to Eq.(9), s̄.se/s0.1+1/2 lnsgi /Pd.

Moreover, taking into account thats̄2
l !t̄2 and thatec

!t̄, and recalling Eq.(41), one gets

S− a1 − P +
5

4

R2gi

s̄
a4D s̄

giR
2

4

a4
.Î1 +

4ec
2A

ss̄2/a3d2 ,

s65d

that is, making use of Eq.(43),

ec .
1

4

a2a4Isgi

a3

s̄

s̄2 − 1
HF5 −

4s̄sP + a1d
a4R

2gi
G2

− 1J . s66d

The values computed using relation(65) are plotted in
Fig. 10(squares), for different values ofgi /P. Even though a
discrepancy is observed, Eq.(66) is able to reproduce the
qualitative behavior of the simulated data. Hence, it repre-
sents a reliable tool to investigate the extension of the stable
zone as function of the main parameters of the system. Note
that the explicit knowledge of the critical detuning may al-
low to exploit the range of tunability of the machine param-
eters, thus obtaining the largest stable zone as a result of an
optimization of the experimental setting.

In the framework of the super-mode theory a semianalyti-
cal expression forec was recently derived[34], namely,

secdsm=
1.355

c

dl

1 + mc/x̃
, s67d

where dl .0.114f1+0.015sNd/NdgDokgi is the cavity mis-
match yielding the maximum gain,mc=Dok/st,0 stands for
the slippage factor andx̃=3+0.1sNd/Nd.

The different theoretical estimates can be compared to the
experimental results. The values are listed in Table III for the

case of the Super-ACO FEL.
A comparison with experiments is possible only for the

case of the Super-ACO FEL. As it has been already re-
marked, the ELETTRA FEL does not presently display a
stable “cw” zone around the perfect synchronism. As shown
in Table I, a satisfactory agreement between theory and ex-
periments is found, even though relation(66) slightly under-
estimates the real value. However, it is again worth stressing
that while Eq.(67) has been found by means of a semiana-
lytical calculation, relation(66) is fully analytical and allows
us to relate the critical detuning parameter to the values of
the independent variables of the model.

X. CONCLUSIONS

The results obtained in this paper are manifold. Based on
the assumption of Gaussianity of the laser profile, a new
approximate model of SRFEL has been derived. This simpli-
fied formulation enables a deeper analytical insight into the
longitudinal dynamics of a detuned SRFEL. This allows us,
in particular, to characterize the saturated statistical param-
eters as a function of the detuning amount and to determine
the critical detuning at the point of transition between stable
and unstable regimes. Theoretical results have been com-
pared to the estimates obtained in the framework of the
super-mode theory and shown to be in good agreement with
experiments.

Moreover, the transition between the stable “cw” regime
and the unstable steady state has been shown to be a Hopf
bifurcation. Hence, a suitable feedback procedure has been
introduced and shown to enlarge the region of stable signal.
This theoretical result opens up the perspective of improving
the performance of the real device, in terms of stability and
efficiency.
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APPENDIX A: CALCULATION OF THE FIXED POINTS
OF SYSTEM (38)

Consider the system(34). The fixed points are found by
solving the following set of equations:

a2Ī + 1 − s̄2 = 0,

R2F1 +
gi

s̄
a4

ss̄2−1d/a2S1 −
a3

2

sl
2

s̄2 −
a3

2

st̄ + ed2

s̄2 DG = 1,

st̄ + edgia3a4
ss̄2−1d/a2

s̄l
2

s̄3 = e,

gia3a4
ss̄2−1d/a2

s̄l
4

s̄3 =
Is

Ī
S s̄2

a3
+ t̄2D . sA1d

By dividing, side by side, the third and the fourth equations
of Eq. (A1), one gets

st̄ + ed
s̄l

2 =
eĪ

Is

1

S s̄2

a3
+ t̄2D . sA2d

Neglectinge with respect tot̄, the previous equation can be
written in the form

t̄3 +
s̄2

a3
t̄ =

es̄2
l Ī

Is
. sA3d

From the third equation of the system(A1), one gets

s̄2
l =

e

gia3

s̄3

st̄ + ed
a4

s1−s̄2d/a2 .
e

gia3

s̄3

t̄
a4

s1−s̄2d/a2. sA4d

Substituting(A4) into (A3) gives

t̄4 +
s̄2

a3
t̄2 =

e2Ī

Is

s̄3a4
s1−s̄2d/a2

gia3
. sA5d

On the other hand, from the first equation of the system(A1),
one obtains

Ī =
s̄2 − 1

a2
sA6d

[which coincides with Eq.(40)].
The fourth-order equation fort̄ can be finally written in

the form

t̄4 +
s̄2

a3
t̄2 = Ae2, sA7d

where the coefficientA is defined as in Eq.(43). Solving Eq.
(A7), one gets the result(41).

Consider now the fourth equation of the system(A1).
Using the expression(41) for t̄, one finds Eq.(42) for s̄l.

An approximated closed analytical expression fors̄ can
be also derived by assuming

s̄2 =
se

2

s0
2 + d sA8d

(with d!1) and solving Eq.(44) for d. The main steps of the
calculation are outlined below.

First, the following approximations hold:

s̄ =Îse
2

s0
2S1 +

d

se
2/s0

2D .
se

s0
S1 +

1

2

s0
2

se
2dD , sA9d

a4
ss̄2−1d/a2 . a4a4

d/a2 . a4S1 +
ln a4

a2
dD , sA10d

1

s̄2 .
s0

2

se
2S1 −

s0
2

se
2dD . sA11d

By making use of relations(A9)–(A11), one gets

A =
s̄3ss̄2 − 1d

a2Is

a4
s1−s̄2d/a2

gia3
.

se
2/s0

2

giIsa3a4
FSse

2

s0
2 − 1D + dG

3Sse
2

s0
2 + dDS1 +

1

2

se
2

s0
2dDS1 −

ln a4

a2
dD

which, at the first order ind, takes the form

A . a + db sA12d

with a andb given, respectively, by Eqs.(51) and (49).
Further, by inserting Eq.(A12) into (41) and retaining

only the first order terms ind one gets

t̄2 = G1 + dG2, sA13d

with G1 andG2 as in Eqs.(47) and (48).
Finally, the second equation of the system(A1) can be

recast in the form

gi

s̄
a4

ss̄2−1d/a2H1 −
1

2

a3

s̄2fs̄l
2 + st̄ + ed2gJ =

P

R2 . sA14d

By inserting both Eqs.(A12) and (A13) into Eq. (A14) and
solving for d one ends up with relation(46).

APPENDIX B: CALCULATION OF JACOBIAN MATRIX
OF SYSTEM (38)

In this Appendix the elements

Jij = S ] f i

] Xj
D

X=X̄
si, j = 1,2,3,4d sB1d

of the Jacobian matrix associated to the single-turn map(38),
are listed. A straightforward calculation leads to

J11 = −
a1

DT
, sB2d

J12 =
a1a2

DT
, sB3d
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J13 = 0, sB4d

J14 = 0; sB5d

J21 =
R2

DT

gi

s̄
Īa4

ss̄2−1d/a2HF ln a4

a2
−

1

2s̄
G

3F1 −
a3

2
S s̄2

l

s̄2 +
st̄ + ed2

s̄2 DG +
a3

2
S s̄2

l

s̄4 +
st̄ + ed2

s̄4 DJ ,

sB6d

J22 =
R2

DT
H1 +

gi

s̄
a4

ss̄2−1d/a2F1 −
a3

2
S s̄l

2

s̄2 +
st̄ + ed2

s̄2 DGJ −
1

DT
,

sB7d

J23 = −
R2

DT
a3

gi

s̄
Īa4

ss̄2−1d/a2
st̄ + ed

s̄2 , sB8d

J24 = −
1

2

R2

DT
a3

gi

s̄
Īa4

ss̄2−1d/a2
1

s̄2; sB9d

J31 =
1

DT
a3

gi

s̄
a4
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